Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

7,8-Diphenyl-9-dimethylsulfido-10,11- μ-hydro-7,8-dicarba-nidoundecaborane $(9)^{1}$

David Ellis, Georgina M. Rosair, Susan Robertson and Alan J. Welch*

Department of Chemistry, Heriot-Watt University, Edinburgh EH14 4AS, Scotland Correspondence e-mail: a.j.welch@hw.ac.uk

Received 6 July 2000
Accepted 22 August 2000
In the title compound, $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~B}_{9} \mathrm{~S}$, there are two crystallographically independent molecules, and the conformations of the phenyl and SMe_{2} substituents indicate some intramolecular steric crowding. The bridging H atom is asymmetrically disposed. The title compound is a precursor to a crowded vertex-labelled nido carborane ligand important in establishing the mechanism of isomerization of icosahedral heteroboranes.

Comment

We have demonstrated recently that deliberately overcrowding dicarbametallaboranes can lead to two interesting consequences (Welch, 1999). Metallation of $\left[7,8\right.$ - $\mathrm{Ph}_{2}-7,8$-nido$\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}\right]^{2-}$ with an $\{M(\eta-L)\}$ fragment $(L=\eta$-bonded polyene) affords pseudo-closo carbametallaboranes in which the cage $\mathrm{C}-\mathrm{C}$ connectivity is prized open by $\mathrm{Ph} \cdots \mathrm{Ph}$ crowding (Brain et al., 1996). In contrast, metallation with $\left\{M\left(\mathrm{P} R_{3}\right)_{2}\right\}$ fragments $(M=\mathrm{Pt}, \mathrm{Ni})$ or with an $\{\mathrm{Mo}(\eta-$ $\left.\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}$ \} fragment yields, at low temperatures, C atom isomerizations of either the $1,2 \rightarrow 1,7$ (Baghurst et al., 1993) or $1,2 \rightarrow 1,2$ type (Garrioch et al., 1999), including, in the former case, the isolation of an isomerization intermediate (Dunn et al., 1997).

(1)

(2)

(3)

With regard to isomerizations, analogous chemistry using vertex-labelled carborane ligands should lead to a reliable experimental mapping of the isomerization mechanism. Thus we have recently described the consequences of metallation/ isomerization of $\left[7,8-\mathrm{Ph}_{2}-10-\mathrm{SMe}_{2}-7,8 \text {-nido- } \mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\right]^{-}$(Dunn et al., 1999) and have begun to prepare other vertex-labelled carboranes (e.g. McGrath et al., 2000). We report herein the molecular structure of $7,8-\mathrm{Ph}_{2}-9-\mathrm{SMe}_{2}-7,8$-nido- $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}$

[^0][super ${ }^{2}$ carb' $^{\prime} H$, (1)], a vertex-labelled carborane we first described a few years ago (Rosair et al., 1997) and which we have previously metallated with an $\left\{\mathrm{Ru}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right\}$ cap (Rosair et al., 1998). Super ${ }^{2}$ carb' $^{\prime} \mathrm{H}$ is an analogue of carb'H [(2); Cowie et al., 1994] and 11-supercarb'H [(3); Rosair et al., 1997], both of which have been structurally characterized.

Compound (1) crystallizes with two independent molecules in the asymmetric fraction of the unit cell, and a perspective view of one molecule, together with the atomic numbering scheme, is shown in Fig. 1. In the second independent molecule, corresponding atom labels are primed, except for H10A which becomes H10B.
The carborane cage has the expected nido-icosahedral geometry, with Ph substituents at C 7 and C 8 and an SMe_{2} function attached to B9. B10-B11 is bridged asymmetrically by hydrogen [unprimed molecule $\mathrm{H} 10 \mathrm{~A}-\mathrm{B} 101.19$ (3) and H10A-B11 1.35 (3) \AA; primed molecule $\mathrm{H} 10 B-\mathrm{B}_{1} 0^{\prime} 1.17$ (3) and $\mathrm{H} 10 B-\mathrm{B} 11^{\prime} 1.30$ (3) \AA]. The weighted r.m.s.d. of the $\left\{\mathrm{C}_{2} \mathrm{~B}_{9}\right\}$ portion of the unprimed and primed molecules is only $0.007 \AA$, and only $0.024 \AA$ if atoms C71, C81 and S9 are included.

The conformations of the substituents on the cage are best described by the angles θ and τ. Angle θ is the twist angle of the phenyl substituents, defined (Cowie et al., 1994) as the modulus of the average $\mathrm{C}_{\text {cage }}-\mathrm{C}_{\text {cage }}-\mathrm{C}_{\text {ipso }}-\mathrm{C}$ angle, and τ is the $\mathrm{C} 8-\mathrm{B} 9-\mathrm{S} 9-\mathrm{S}$ (lone pair) torsion angle (Hamilton \& Welch, 1991), calculated from the measurable C8-B9-S9$\mathrm{C}(\mathrm{Me})$ angles. In the unprimed molecule, $\theta_{\text {ring }}, \theta_{\text {ring }}$ and τ are 3.9 (3), 18.2 (3) and $27.6(3)^{\circ}$, respectively. In the primed molecule, the corresponding values are 5.6 (3), 13.6 (3) and 18.7 (3) ${ }^{\circ}$. These data, taken together with the key molecular parameters in Table 1, provide evidence of intramolecular steric crowding in (1) between the three sequential substituents. The low τ values result from the Me groups on S9 positioning themselves far from the Ph substituent on C 8 . The deviations of τ and $\theta_{\text {rings }}$ from 0° are conrotatory (and anticlockwise in the sense of Fig. 1) and there is a further geared, although smaller, rotation of ring 7. In (1), the (hydrogenbridged) facial B10-B11 distance [average 1.864 (6) \AA] is, as expected, significantly longer than the (unbridged) B9-B10

Figure 1

Perspective view of (1) with displacement ellipsoids shown at the 50% probability level for non-H atoms. H atoms are drawn as small circles of arbitrary radii.
distance [average 1.780 (6) \AA]. Less well understood is the fact that $\mathrm{C} 7-\mathrm{B} 11$ is longer than $\mathrm{C} 8-\mathrm{B} 9$, although the same feature has previously been noted in both (2) and (3). In moving from compound (2) to compound (3) (addition of one Ph substituent), both the $\mathrm{C} 8-\mathrm{B} 9$ and $\mathrm{C} 7-\mathrm{C} 8$ distances increase (ca $1.58 \rightarrow 1.61$ and $1.53 \rightarrow 1.56 \AA$, respectively), whilst in moving from (3) to (1) (addition of second Ph substituent), only $\mathrm{C} 7-\mathrm{C} 8$ shows a further increase $(c a 1.56 \rightarrow 1.59 \AA$).

Deprotonation of (1) followed by addition of an $\{\mathrm{Ru}(\eta$ $\left.\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right)^{+}\right\}$fragment leads (Rosair et al., 1998) to a pseudo-closo carbametallaborane which, although deformed from an icosahedral geometry, has not isomerized. Future contributions (Ellis et al., 2000) will report further metallations of (deprotonated) (1), which result in low-temperature isomerizations and in which the SMe_{2} group is used as a marker for the movement of B 9 in these rearrangements.

Experimental

The title compound was prepared as described previously (Rosair et al., 1997) and the purity was checked by microanalysis, and ${ }^{1} \mathrm{H}$ and ${ }^{11}$ B NMR spectroscopies. Crystals suitable for diffraction were grown from a solution of (1) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, layered with 60-80 petroleum ether.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~B}_{9} \mathrm{~S}$
$M_{r}=346.71$
Monoclinic, $P 2_{{ }_{1}} / n$
$a=13.039(2) \AA$
$b=15.2610(16) \AA$
$c=21.319(5) \AA$
$\beta=107.581$ (14) ${ }^{\circ}$
$V=4044.2(13) \AA^{3}$
$Z=8$
$D_{x}=1.139 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 45
\quad reflections
$\theta=2.66-16.24^{\circ}$
$\mu=0.156 \mathrm{~mm}^{-1}$
$T=160(2) \mathrm{K}$
Plate, colourless
$0.62 \times 0.44 \times 0.21 \mathrm{~mm}$

Data collection

Bruker P4 diffractometer
ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.924, T_{\text {max }}=0.968$
8786 measured reflections
7111 independent reflections
5279 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.033 \\
& \theta_{\max }=25^{\circ} \\
& h=-15 \rightarrow 1 \\
& k=-18 \rightarrow 1 \\
& l=-24 \rightarrow 25 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \quad \text { intensity decay: } 1.7 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.129$
$S=1.037$
7111 reflections
523 parameters
H atoms treated by a mixture of independent and constrained refinement
Phenyl H atoms were set riding with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and with isotropic displacement parameters equal to $1.2 U_{\text {eq }}$ of the corresponding C atom. Cluster H atoms were allowed free positional refinement, but were assigned isotropic displacement parameters equal to $1.2 U_{\text {eq }}$ of the corresponding B atom.

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

C7-C8	1.585 (3)	$\mathrm{C} 7^{\prime}-\mathrm{C} 8^{\prime}$	1.585 (3)
C7-B11	1.654 (3)	$\mathrm{C} 7^{\prime}-\mathrm{B} 11^{\prime}$	1.651 (3)
C7-C71	1.508 (3)	$\mathrm{C} 7{ }^{\prime}-\mathrm{C} 71^{\prime}$	1.507 (3)
C8-B9	1.612 (3)	C8'-B9 ${ }^{\prime}$	1.617 (3)
C8-C81	1.507 (3)	C8 ${ }^{\prime}-\mathrm{C} 81^{\prime}$	1.509 (3)
B9-S9	1.889 (3)	B9 ${ }^{\prime}-\mathrm{S} 9^{\prime}$	1.888 (3)
B9-B10	1.782 (4)	B9' $-\mathrm{B} 10^{\prime}$	1.778 (4)
B10-B11	1.862 (4)	B10'-B11	1.863 (4)
B10-H10A	1.19 (3)	B10'-H10B	1.17 (3)
B11-H10A	1.35 (3)	B11'-H10B	1.30 (3)
S9-C91	1.796 (3)	S9'-C91	1.804 (3)
S9-C92	1.792 (3)	S9'-C92'	1.797 (3)
C71-C7-C8	118.83 (18)	$\mathrm{C} 71^{\prime}-\mathrm{C} 7^{\prime}-\mathrm{C} 8^{\prime}$	120.43 (17)
C81-C8-C7	117.32 (18)	$\mathrm{C} 81^{\prime}-\mathrm{C} 8^{\prime}-\mathrm{C} 7^{\prime}$	116.92 (18)
C92-S9-C91	99.89 (13)	$\mathrm{C} 92^{\prime}-\mathrm{S} 9^{\prime}-\mathrm{C} 91^{\prime}$	100.89 (19)
C92-S9-B9	103.29 (12)	$\mathrm{C} 92^{\prime}-\mathrm{S} 9^{\prime}-\mathrm{B} 9^{\prime}$	104.49 (13)
C91-S9-B9	105.16 (12)	C91'-S9'-B9 ${ }^{\prime}$	104.08 (13)
C8-C7-C71-C76	94.3 (3)	$\mathrm{C} 8^{\prime}-\mathrm{C} 7^{\prime}-\mathrm{C} 71^{\prime}-\mathrm{C} 72^{\prime}$	98.0 (3)
C8-C7-C71-C72	-86.5 (3)	$\mathrm{C} 8^{\prime}-\mathrm{C} 7^{\prime}-\mathrm{C} 71^{\prime}-\mathrm{C} 76^{\prime}$	-86.9 (3)
C7-C8-C81-C82	109.2 (2)	$\mathrm{C} 7^{\prime}-\mathrm{C} 8^{\prime}-\mathrm{C} 81^{\prime}-\mathrm{C} 82^{\prime}$	-104.6 (3)
C7-C8-C81-C86	-72.8 (3)	$\mathrm{C} 7^{\prime}-\mathrm{C} 8^{\prime}-\mathrm{C} 81^{\prime}-\mathrm{C} 86^{\prime}$	77.4 (3)
C8-B9-S9-C92	155.50 (18)	$\mathrm{C} 8^{\prime}-\mathrm{B} 9^{\prime}-\mathrm{S} 9^{\prime}-\mathrm{C} 92^{\prime}$	-146.0 (2)
B10-B9-S9-C92	-58.0 (2)	B10 ${ }^{\prime}-\mathrm{B}^{\prime}-\mathrm{S} 9^{\prime}-\mathrm{C} 92^{\prime}$	69.1 (2)
C8-B9-S9-C91	-100.21 (19)	$\mathrm{C} 8^{\prime}-\mathrm{B} 9^{\prime}-\mathrm{S} 9^{\prime}-\mathrm{C} 91^{\prime}$	108.6 (2)
B10-B9-S9-C91	46.3 (2)	$\mathrm{B} 10^{\prime}-\mathrm{B}^{\prime}-\mathrm{S}^{\prime}-\mathrm{C} 91^{\prime}$	-36.4 (3)

We thank the Leverhulme Trust and Heriot-Watt University for support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1115). Services for accessing these data are described at the back of the journal.

References

Baghurst, D. R., Copley, R. C. B., Fleischer, H., Mingos, D. M. P., Kyd, G. O., Yellowlees, L. J., Welch, A. J., Spalding, T. R. \& O’Connell, D. (1993). J. Organomet. Chem. 447, C14-17.
Brain, P. T., Bühl, M., Cowie, J., Lewis, Z. G. \& Welch, A. J. (1996). J. Chem. Soc. Dalton Trans. pp. 231-237.
Bruker (1997). XSCANS. Version 2.2. Bruker AXS Inc., Madison, Wisconsin, USA.
Cowie, J., Reid, B. D., Watmough, J. M. S. \& Welch, A. J. (1994). J. Organomet. Chem. 481, 283-293.
Dunn, S., Garrioch, R. M., Rosair, G. M., Smith, L. \& Welch, A. J. (1999). Collect. Czech. Chem. Commun. 64, 1013-1027.
Dunn, S., Rosair, G. M., Thomas, Rh. Ll., Weller, A. S. \& Welch, A. J. (1997). Angew. Chem. Int. Ed. Engl. 36, 645-647.
Ellis, D., Garrioch, R. M., Robertson, S., Rosair, G. M. \& Welch, A. J. (2000). In preparation.
Garrioch, R. M., Kuballa, P. J., Low, K. S., Rosair, G. M. \& Welch, A. J. (1999). J. Organomet. Chem. 575, 57-62.

Garrioch, R. M., Rosair, G. M. \& Welch, A. J. (2000). J. Organomet. Chem. In the press.
Hamilton, E. J. M. \& Welch, A. J. (1991). Polyhedron, 10, 471-476.
McGrath, T. D., Fox, M. A. \& Welch, A. J. (2000). Acta Cryst. C56, 487-488.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rosair, G. M., Welch, A. J. \& Weller, A. S. (1998). Organometallics, 17, $3227-$ 3235.

Rosair, G. M., Welch, A. J., Weller, A. S. \& Zahn, S. K. (1997). J. Organomet. Chem. 536, 299-308.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1999). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Welch, A. J. (1999). Steric Effects in Metallacarboranes in Metal Clusters in Chemistry, edited by P. Braunstein, L. A. Oro \& P. R. Raithby, pp. 26-47. Weinheim: Wiley-VCH.

[^0]: ${ }^{1}$ Steric effects in heteroboranes. Part 26. For Part 25, see Garrioch et al. (2000).

